01—Li—05	111 (1)	P1-C1A-C1B	120.3 (7)
01—Li—06	108 (2)	P1C1AC1F	121.7 (8)
01—Li—07	104 (2)	P1—C2A—C2B	121.6 (8)
05—Li—06	113 (1)	P1C2AC2F	119.7 (8)
05Li07	115 (1)		

Symmetry code: (i) -x, -y, -z.

The structure was solved by the Patterson method and refined by full-matrix least squares. Anisotropic displacement parameters were refined for all non-H atoms with the exception of 12 thf methylene C atoms. The large isotropic *B* values for these atoms (Table 1) and the large range shown by thf C—C bonds may indicate some disorder of the thf groups. All calculations were performed using the *SDP* system (Enraf-Nonius, 1985) on a MicroVAX II computer.

We thank the Hong Kong Research Grant Council and the University of Hong Kong for support.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1093). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Keiter, R. L., Keiter, E. A., Rust, M. S., Miller, D. R., Sherman, E. O. & Coope, D. E. (1992). Organometailics, 11, 487–489.
- Linck, M. H. & Nassimbeni, L. R. (1973). Inorg. Nucl. Chem. Lett. 9, 1105–1113.
- Shyu, S.-G., Calligaris, M., Nardin, G. & Wojcicki, A. (1987). J. Am. Chem. Soc. 109, 3617-3625.
- Treichel, P. M., Dean, W. K. & Douglas, W. M. (1972). J. Organomet. Chem. 42, 145-149.

Acta Cryst. (1994). C50, 1406-1407

trans-Dichlorotetrapyridineruthenium(II)

WING-TAK WONG

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

TAI-CHU LAU

Department of Applied Science, City Polytechnic of Hong Kong, Hong Kong

(Received 4 October 1993; accepted 16 February 1994)

Abstract

 $[Ru(py)_4Cl_2]$ (where py = pyridine, C_5H_5N), crystallizes in the tetragonal space group $I4_1/acd$. Ru and Cl atoms occupy sites of 222 and 2 point symmetry,

 \bigcirc 1994 International Union of Crystallography Printed in Great Britain – all rights reserved respectively. The Ru atom has slightly distorted octahedral coordination. The Cl—Ru—Cl moiety is linear, as a result of symmetry requirements.

Comment

The title compound, (I), was prepared using a modification of procedures described by Bottomley & Mukaida (1982) and Gilbert, Rose & Wilkinson (1970). Hydrated RuCl₃ was dissolved in 90% ethanol. To this solution excess pyridine was added and the mixture was refluxed for 1 h. After cooling, the resulting precipitate was filtered and washed with water, and then with diethyl ether (yield 42%). Orange-red crystals suitable for X-ray analysis were grown by slow evaporation of a 1:1 CH₂Cl₂/CH₃CN solution of the complex.

Since there have been relatively few structural studies of *trans*-dichlorotetraamineruthenium(II) species, we have determined the structure of the title compound. It crystallizes in $I4_1/acd$ (No. 142; origin taken at I). The Ru atom lies on the special position with site symmetry 222 [Wyckoff position 8(b)] and the Cl atom lies on a twofold axis [Wyckoff position 16(f)]. The pyridine ligand is in a general position and four symmetrically related pyridine ligands are bonded to each Ru atom. The Ru—Cl bond distance is comparable to those observed in other dichlororuthenium(II) complexes (Seal & Ray, 1984), but is significantly longer than those observed in [Ru^{III}(py)₄Cl₂]⁺ (Al-Zamil *et al.*, 1982).

Fig. 1. The molecular structure of trans-[Ru(py)₄Cl₂].

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.22 \times 0.12 \times 0.12$ mm

650 observed reflections

 $[F_o > 3\sigma(F_o)]$

3 standard reflections frequency: 120 min

intensity variation: ±2%

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 1.0 \text{ mm}^{-1}$

 $\theta = 10 - 13^{\circ}$

T = 293 K

Orange-red

 $R_{\rm int} = 0.022$

 $h = 0 \rightarrow 19$

 $k = 0 \rightarrow 19$

 $l = 0 \rightarrow 20$

 $\theta_{\rm max} = 26^{\circ}$

Block

Experimental

Crystal data [Ru(C₅H₅N)₄Cl₂] $M_r = 488.38$ Tetragonal $I4_1/acd$ (origin at $\overline{1}$) a = 15.701 (2) Å c = 16.987 (2) Å V = 4187.7 (8) Å³ Z = 8 $D_x = 1.550$ Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical $T_{min} = 0.810, T_{max} =$ 0.999 2293 measured reflections 1208 independent reflections

Refinement

 $w = 4F_o^2 / [\sigma^2 (F_o^2) + (0.04F_o^2)^2]$ Refinement on F R = 0.029 $(\Delta/\sigma)_{\rm max} = 0.01$ $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.036 $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.119Atomic scattering factors 650 reflections from International Tables 63 parameters H-atom parameters not for X-ray Crystallography (1974, Vol. IV) refined

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

	x	у	Z	Bea
Ru	0	1/4	1/8	2.249 (6)
Cl1	0.10837 (5)	x + 1/4	1/8	3.50 (2)
N1	0.0659 (2)	0.1833 (2)	0.2115(1)	2.70 (5)
C1	0.0251 (2)	0.1456 (2)	0.2720(2)	3.45 (7)
C2	0.0676 (2)	0.1013 (3)	0.3299 (2)	4.40 (8)
C3	0.1541 (3)	0.0942 (3)	0.3267 (2)	4.86 (9)
C4	0.1964 (2)	0.1316 (2)	0.2653 (2)	3.91 (8)
C5	0.1507 (2)	0.1753 (2)	0.2093 (2)	3.18 (7)

Table 2. Selected geometric parameters (Å, °)

Ru—Cl1	2.4054 (6)	C1—C2	1.376 (5)
Ru—N1	2.079 (2)	C2—C3	1.363 (5)
N1-C1	1.347 (5)	C3C4	1.369 (5)
N1-C5	1.337 (4)	C4C5	1.373 (5)
C11-Ru-N1	90.23 (8)	C1—C2—C3	119.7 (3)
Ru—N1—C1	121.5 (2)	C2C3C4	118.6 (3)
Ru-N1-C5	121.5 (3)	C3-C4-C5	119.2 (3)
C1-N1-C5	116.9 (3)	N1-C5-C4	123.2 (3)
N1-C1-C2	122.5 (3)		

The space group $I4_1/acd$ was chosen from the systematic absences and led to a successful refinement. The structure was solved by the Patterson method and refined by full-matrix least squares. All calculations were performed using the *SDP* system (Enraf–Nonius, 1985) on a MicroVAX II computer.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved We thank the Hong Kong Research Grant Council and the University of Hong Kong for support.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1092). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Al-Zamil, N. S., Evans, E. H. M., Gillard, R. D., James, D. W., Jenkins, T. E., Lancashire, R. J. & Williams, P. A. (1982). *Polyhedron*, 1, 525-534.

- Bottomley, F. & Mukaida, M. (1982). J. Chem. Soc. Dalton Trans. pp. 1933-1937.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Gilbert, J. D., Rose, D. & Wilkinson, G. (1970). J. Chem. Soc. pp. 2765-2769.

Seal, A. & Ray, S. (1984). Acta Cryst. C40, 929-932.

Acta Cryst. (1994). C50, 1407-1409

Sodium *trans*-Dicyano[*N*,*N*'-1,2-phenylenebis(2-pyridinecarboxamido)]cobaltate(III)

WING-TAK WONG* AND CHI-MING CHE

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 27 September 1993; accepted 16 February 1994)

Abstract

The Co atom in the $[Co^{III}(CN)_2(C_{18}H_{12}N_4O_2)]^$ complex anion is hexacoordinate with a distorted octahedral geometry. The four N atoms in the amide ligand occupy equatorial positions and are coplanar to within 0.007 Å. The two CN groups are coordinated to Co in a *trans* configuration. The Na cation interacts with four complex anions through their cyanide-N and amide-O atoms, thereby adopting a distorted tetrahedral coordination.

Comment

We recently reported some σ -alkylcobalt(III) complexes bearing an organic amide ligand (bpb or bpc; see scheme below) (Mak, Wong, Yam, Lai & Che, 1991). We are also interested in the structural chemistry of coordination compounds containing these amide ligands. This study indicates that the bpb ligand in the [Co(bpb)(CN)₂]⁻ anion (I) deviates from planarity; the interplanar angles between the